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THE MOST RESTRICTIVE BOUNDS ON CHANGE IN THE APPLIED ELASTIC CONSTANTS
FOR ANISOTROPIC MATERIALS

N. I. Ostrosablin UDC 539.3:548.053

A representation of the elastic constants tensor was given in [1], for the general
anisotropic case, in a form which ensured positive definiteness of the specific strain energy
and which indicates the strictest bounds for each elastic constant. In the same paper, there
is reference to works in which this question had been previously addressed, and which stud-
ied the general properties of the tensor of elastic constants. The limits of the variability
of the elastic constants was also studied in [2, 3]. Formulas for the characteristic elastic
moduli and the states for materials of all crystallographic systems were obtained in [4].

In this work, explicit formulas for the applied elastic constants (Young's modulus, the
shear and bulk moduli, Poisson's ratio) are given on the basis of the representation from
[1] for the general anisotropic case. The formulas show the limits of variability of these
constants. The appropriate formulas for the elastic constants for materials of all crystal-
lographic systems are given. The strictest bounds (without refinement) on these constants
which ensure a positive definite specific strain energy are established.

1. In the matrix notation of [1, 4], Hooke's law and the specific strain energy are
written as

J; =Aii8j,'8i‘=dij0'j; (1.1)
20 = 0:8; = Aijgisj = @;;0;0;. (1.2)

Here and below, repeated indices denote summation from 1 to 6. The matrices of the elastic
constants Ajj and aij are symmetric, and the quadratic form (1.2) is positive definite.

As shown in [1], ajj and Aij can be represented in the form

a;; = dicincy + Boistsn + d3ci3"f3; + dyciqis + dscintis + deCigCie, (1.3)
ip=0(p>1), ey = ... =¢gq = 1;
—1 —1 —1 —1 —1 —1 —1 —1_ —1 ~1 —1 . —1 —1 —1 —1 ;1 ] -
Aij =dj ¢g ¢y + dy “Caq co;” + ds “cai c3i d4 Cai Cgj + d Cpi G55 dg 0511631-1, (1.4)

C£)1=0 (p>i)3 («'ﬁl:-vo:cﬁ-f‘il:i'
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In this case, in (1.3) and (1.4) we have

d; >0, dy>0, dy >0, d,>0,d;>0,d;>0 (1.5)
and the elements of the matrix c;j are computed using the recursion formula
et =8 —cuent (k<i—1,i=1,,..,6) (1.6)

(Bij is the unit matrix).

Condition (1.5) is necessary and sufficient for positive definiteness of the matrices
aij and Aij {1}l. By assigning six positive numbers dy and 15 arbitrary parameters ciy (i > k)
according to (1.3), (1.4), and (1.6), we obtain the limits of change for each constant aj; or
Aj; for all anisotropic materials which can be described solely in terms of Hooke's law (Jl.l)
(cf. for example, [3, 5]). Formulas (1.4) and (1.6) make it possible simply to find Aij, that
is, the inverse matrix to ajj. If aj; is given, then from (1.3) it is straightforward to

find dg, cjx [1], and to verify (1.5). Formulas (1.3) and (1.4) are completely equivalent
in the sense that if Ajj can be represented as (1.3), then ajj will have the form (1.4).

Using (1.3) and (1.4), we write the specific strain energy (1.2) in the following way:

20 = d; (0] + 3,05 + €4,05 + 4,0, + 5,05 + €6,06)% + dy (0, + 4505 +

F €004 + C5905 + €4506)° + d3 (05 + €304 + 5305 + Co506) +

+ 0, (04 + €5405 + €6106)* + d5 (05 + C6304)° + dg0g =

=d7 e + &yt (etey + ;)% -+ d3 t (catte, + cpte, + &5) -
+ dyt (cm'ey + cn'es + Cey + £,) + di(cite, + ctes + cntes +
+ e+ gg)" + dg (cor'er F ciies + can'es + ciitey + Ci'es + g (1.7)

In place of ajj one can use the technical notaiton [6]:
a;j = Vijl E; = VulE;, V= ... = vg =1 (1.8)

(there is no summation over i or j). Here E;, E;, E; are the Young's moduli in the directions
of the axes; E, = 2y,,, E; = 2p, 5, E;, = 2u;, are the shear moduli; vij (i, 3 =1, 2, 3) are
Poisson's ratios; vij (i, j = 4, 5, 6) are Chentsov coefficients; vij (i =1, 2, 3, j =4,

5, 6 or j=1, 2,3, i=4,5, 6) are the interactive influence coefficients. In (1.8), in
contrast to the traditional notation, there is no minus sign in front of Poisson's ratio.

In our opinion, this is more natural.

Let nj, my (i =1, 2, 3) be two orthogonal directions: njn; = 1, mym; = 1, and nimj = 0.
We use the notation

() = (n?, ng, n§, V§ Nyltg, VE n g, VE n1n2)7
(m); = (m2, m3, m%, V' 2 mymg, V2m,mg, V 2mm,),
(nm); = (nymy, nymy, ngs, ]/2_(n2m3 -+ ngm,)/2,

Vi(nlms -+ nym,)/2, Vi(’hmz + nymy)/2).

(1.9)

Now, using formuals (1.3) and (1.9), we will obtain the applied elastic constants. We
write the bulk modulus as

1/K =‘.a11 + gy T+ @33 + 2(an + ay + a5) = d,(1 + cop + c5)® + dy(1 - c5)? + ds. (1.10)

From (1.10) it is clear that the bulk modulus is always positive (compare with [6]). Young's
modulus in the direction ni is represented as:

1 Ep = (n); ai; (n); = dy (n} + nieyy + nicgy + V2 ngngey + ,
+ V2 e + V2nmace ) + dy (02 + nieyy + V2001460 + V200505 +
+ V32 n1n2062)2 + dy (n2 +‘ V§n2n3043 + V2 niNaCys + V2 nlnzcﬁa)2 4+
+ 2d, (nyny + nynaCsy + RiMCes)? - 2d, (ny1g + Nyneee )P + 2dg (nyny). (1.11)
Poisson's ratio in the direction my with tension in the direction nj has the form

Voun/ En = (m); ai; (R); = d (mi + mgcn + mgc:ﬂ + Vi MmaMmgCyy +
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+ V2 mmaey, + V2 mamace, ) (nd + nicy + nace, + V2 nyMaCyy +
+ V2 nyRyCsy + V2 n,_nzcm) + d, (m3 + mieq, + V2 MMgCyy
-+ I/E MyMyCeo + ]/5 m1m2062) (ng + n§c32 + ]/E RoNaCyo + V§ nyNglqs -t
+ V2nnee) + ds(m2+ V2mgmye,s + V2mmaes, + V2mymgee,) (n5 +
+ V 2 ngnge,s + V 2 nyngey, + Va2 RRaCey) + 2dy (Mg + mymgcs, +
= myMycey) (ol + nynsCs, + RiNgCe,) + 2dy (mymy + mmyces) (Rty + nyngces) + 2dgM Mgl Ty (1.12)

From (1.11) and (1.12) we obtain

—1 —1 2 -1 2 2
Ef =d,=ay, £y =dicn + dy = agy, By~ =dic51 + dycsz + dg = g3, Vo3 = Cg15 Vg = Cyy,

.
vy, = ¢ Vg = 4051891 T ByCsy (1.13)
2 bl 2 b ?
d1021 - d2 d1621 - d2
dlq N

Vig =

dyey, + dyedy -+ d, Vs = ey +dyedy +d
The shear modulus between surfaces with normals nj and mjy is written as
1V(GPnm) = (am)a;(nm); = dyIngng -+ ngmgey, -+ ngmaeq -+ (V 2/2)(ngms
4+ ngmy)ey + (Vi/.Z)(nlm3 -+ ngmydes;, + (1/2_/2)(n1m2 + ngmy)ee 1° - dylngmy + ngmges, + (j/i/?.)(nzm3 -+
+ ngmoess + (V 212)(nymy + ngmydes, (V2_/2)(n1m2: 4 ngmy)egs B+ dylngms + (V2/2)(rgmy + ngma)eys +
. (1/5/2)(nlm3 + ngmy)ess + (V?/Z)(nlm2 + ngmylegs 2 + (1/2)d,[(nymg + ngmy) 4 (nyms + ngmy)csy 1 (Mg -+
+ ngnyega1* + (1/2)ds[(nymg 4 ngmy) 4 (nymy + rgmy)egs 12+ (1/2)dg(nymy -+ ngmy)2. (1.14)
From (1.14) we have
1/(24hg5) = iy + docia - dycos + dy = gy,
1/(20y5) = dycdy + dytia + dygcly + dycy + dy = agg, (1.15)
1/(2p0) = dychy + docha + dychs + dycas + dschs + dg = agq

By assigning arbitrary values to the parameters dy > 0, cix (i > k), ny, my in (1.10)-
(1.15), we obtain the admissible limits on the change of the corresponding elastic constants
for an arbitrary anisotropic material.

2. We now consider materials which have symmetry properties with respect to orthogonal
transformations of the coordinate system. These materials {crystals) are divided into seven
systems and isotropic media, according to their symmetry properties [7]. The matrices ajjs .
Aij will be written out for materials is these crystallographic systems, following [4, 71].

We write these matrices in the form (1.3), (1.4), and the specific strain energy in the
form (1.7). It will be obvious from this what the matrices cjy, cié (i > k) are equal to

for each system.

Cubic System _ -
_ _ ke A, 4, 0 0 0
dy @y Gy 0 0 O 4y (1—cy) (1 20y) a o
dicyy @y 8y 0 0 0 — 9 A. A 0 o 0
ay Gy @3 0 0 O G (T—c)(TH2e) "1 7%
@y = 0 0 04 0 0FV A= Ay 4, 4 0 0 0 |
0 0 0 0 a, 0 0 0 0 d4;* 0 O
| 0 0 0 0 0 a 0 0 0 0 4, O
0 0 0 0 0 A4 _

c 2
20 =d, [0, + 51 (0x+ 0)P+ dy (°2+ ]‘_{_L;gl‘oa) + d302 +d, (Ui +0+ 03)’_—"‘
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= d7%ed 4 dyt (— cyfy + € + d5 2 [ T 32’1 (e, + &) + 83] +d7 (e + et 4+ ep), dg=d,(1—ch),

1+2c21 (2'1)

1—}—021

It is clear from these formulas that cubic system materials are determined by three inde-
pendent parameters: d,, d,, and c,,, and from (1.5) it follows that

d>0,d>0 —12<cy<1a (2.2)
The applied constants for cubic system materials are
1/K = 3dy(1 + 2¢4),
1)En=dy + [dy — dy (1 — ;)1 [4 — (n% + nd + n)], (2.3)
VmnlEn = dicy — ldy — d;(1 — o) (nymy)® 4 (namg)® + (ngmy)?l,
1/ (4Mnm) = (1/ 2)d, — [d4 - dl(i - 021)][(n1m1)2 + (nzmz)2 + (n3m3)2].
- c,;) in (2.1) and (2.3), and (2.2)

dy=d, (1 —cy) y &y =dg=d,

To change to an isotropic material we set d, = d,(1
is retained.

Trigonal System

4 8y %3 41 0 0
a4y %y ) — Oy 0 0
2c§1
Aty 8y 4 TF €y 4, 0 0 0
Gij = 2, ’
4
@y — %y 0 dig—¢_ td O 0
0 %44 Vi Gy
- 0 V2 ty G (1—cy)
r 1 cgl 021 -
+ + 4. A A 0 0
d(1—c2) T a (14, P T4, (1—cy ) T2 T T
2 2
—fy ‘31 ‘a
+ ~ 4, —A 0 0
d1(1—°g1) d3(1+"'21)2 d4(1—-021)2 1 s a
& (T F o) s G O 0
Aij = —¢
41 —1 v
d (1 —¢y) —4y 0 4, 0 0 (2.4)
0 0 0 0 A44 'l/ﬁ 4,
= 1
0 0 0 0 3 A,
V 4d, (1—cy) +
Zcfl
- d4(1-—021)’_
' 4 ¢ 2
20 =d, (65 + €105 + €505 + €40, + dy | 05 + —2—0, — —2L g, | +
14¢,, 1—c,,

V2 @104 (1 —¢y)
dlzcil +dy(1—ey

2
+ dy03 + 4,0} + dy [“5 + ) Us] + doog = d7 ‘e +

—C

 —c 2 i I 2
+ d3t (—cpe el +ds 1[1+fl (1 + 32)+33] + d41[1 — 4211 (81——82)+s4] +

21 c.

—VZde (1—e¢y) 2
% 4 dgt 1°a1 LA I
° d,2c5; +d, (1 —c,) ? °

) 2 20“;1
dy=d,(1—ch), dy=d, T, T
2
d1d4 (1 - czl)z
428 +d, (1 —cy)

8 =
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From (2.4) it is clear that the trigonal system material is given by six independent param-
eters d,, ds, d,, cy31, c3;, and c¢,;, with

d,>0,d,>0, d,>0, —1 <ey <1l (2.5)

Condition (2.5) ensures that the specific strain energy is positive definite for trigonal
system materials. It follows from (2.5) that the lower bound on Poisson's coefficient v,
is =1 for trigonal systems, and not —1/2, as is the case for isotropic and cubic systems
[see (2.2)]. There are no bounds on cy; and c¢,;: they can be arbitrary.

1f in place of d; and d,, the moduli E; and E, = 2u,, are taken as the independent param-
eters, then from (2.5) and the technical notation (1.8), we have

EI 2% 1 2V
By 7B (14vy) TE T B (1= vy)
or after transformation
E E
__l/ﬁ!-m+v21)<v3l<Vﬁ;(1+v21)=f1: . (2.6)
3

E. “E,
_1/2_12"‘;(1—'%1)<V41<l/iﬂ"_z(1~v2l)=f2' (2.7)

Inequalities (2.6) and (2.7) determine the strictest bounds for change in vg;, vy, as func-
tions of the ratios E,/E,;, E;/E, and of v,;. The region of permissible values for vi;, V41,
and v,; are shown in Figs. 1 and 2 for E, = 4E,, and E;, = 2E, (shaded areas).

The applied constants for trigonal system materials are

1 (142 + 631)2
= 2d, ——TEI—— +

1YEp =d, (1 — n2)? + (di2ch/(1 + ¢5)) + do) 13 +
4 2(dyeqy + dg) (1 — n2) n2 + 2V 2'se,, (3nF — 13) ngs,
Vol En = dy¢5y + dy (€31 — C31) (ng + mg) + [dl(1 — 2¢4) + dlzcgl/(1 +c) +
+ dy — 2d,] 3m3 + V' 2 dyeyy [(nymy — ngmy) (ngmy -+ ngmy) +
+ (rymg + ngmy) (nymy + nemy)l, (2.8)
1/ (htnm) = (1/2) dy (1 — e4y) + (1/2) [dy — dy (1 — e2)) (15 + m3) +
+ [dy (1 — 26q0) + di28a/(1 + e3y) + dy — 2d,] mim3 + V 2dyesy X

X [(rymy — nymy) (nymy + ngmy) + (g 4 ngmy) (rymy + nymy)l

ds,

To change to a material of the hexagonal system (transversally isotropic), we must set
c,; = 0 in (2.4) and (2.8) while retaining (2.5).

To change to a tetragonal system material, it is necessary to set c,; = 0 in (2.4), and
in place of az¢ = d,(1 — c,,), to write aggs = dg¢ > 0 and consider d, as an independent param-
eter. Evidently tetragonal system materials are determined by six independent parameters:
d,, d;3, d,, dg, c,;, and c3;, and (2.5) is retained. The bulk modulus has the form (2.8).
The remaining applied constants for tetragonal systems are:

1/E = dy (1 — n3)* + (d:265/(1 + ¢31) + da) n§ + 2(dyesy + d) (1 —n3) n§ +
+ lds — d1 (1 — cy)1 2 (1),
Voin) B = dyeyy + dy (cqy — €a7) (0 + m3) + [d, (1 — 2¢5,) + dy265/(1 + c5y) +
+ dg— 2d,| mim3 + |dg — d, (1 — ¢3,)] 2m mgnyny,
1/(4ptnm) = (1/2) dy (1 — e3) + (1/2) [dy — d, (1 — ¢5)] (5 + m3) +
+ [d, (1 — 2¢3) + 28 /(L + e31) + dy — 2d,] nim? +
+ [dy — dy (1 — e )] (1/2) (mymy + mgmpP.
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Fig. 1 Fig. 2
Orthorhombic System (Orthotropic)
- 4, 2y, @y 0 0 0 7
2,y d,c3y +dy ) 0 00
2 2
a;; = dyeq dlc3lc21+ dythy G105 Tyl Hdy 00 0 ,
0 0 0 d, 00
0 0 0 0d 0
_ 0 0 0 0 0 d_
—1 12 -1 2 -
Ayt dy e, 45 (7 €31 T C32%01) Ay 4 0 00
—1, ~1.2
—dyte 217 dgte g (T o Cyyy) dz F g A, 000
—1 —1 —1
“Ais = dy ™ (= €51 €35851) —dyegy dg 0 0 0
Y 0 0 0d;*0 o0
0 0 0 0 1o
0 0 0 0 0 d4g*t

20 = d, (0; + 5,05 + €3,05)° + d, (0, + ¢5,05)% + d303 + dﬂi + dsog + deaz =
= dl_lsi +d;t (—cg18s + &) + d3_1 [(— ca1 + CagCa1) 8 — €08y + &1° + d;lsi +d5 e + da_leg.

It is clear from these formulas that orthotropic materials are determined by nine independent
parameters: d;, d,,...,dg, Cpy, C3;, and cy, which satisfy (1.5). If the moduli E, and E;
are used in place of d, and d, as the independent parameters, then from (1.5) and the techni-
cal notation (1.8), we have

1 Vgl 1 vgl (Voel By — V31V21/E1)2

L : (2.9)
£, 7 B E £ 1/E, —v5/E,

The bulk modulus takes the form (1.10). The remaining applied constants for orthotropic
materials are:

1/En = dy (rh + rieas + ries)” + dy (7 + riese)” + dyns + 20, (nang)® + 25 () + 2d, (man,)?,
Vol En = dy (M + miey, + mics;) (n} + nleyy + n§c31) +d, (m3 + mieq,)(n3 +
! | + n3ese) + domind + 2d,m, mahyng + 2dsmmgnyng + 2dem1mon1n21
1 i m) = d1(n1m1 + hzmzc21 - ngmges)? + dz(nzm2 + ngmgegy)® + dy(ngmg)? 4 d,(1/2)(nym, +
\ \—i— nsmz)2 + ds(1/2)(nymg -+ ngmy)* - dﬁ(l/Z)(nlm2 - ngmy)2.

If the x, axis is taken as the axis of second order symmetry, then we obtain the formulas
for a monoclinic system material from the general formulas (1.3), (1.4), (1.7), (1.10)-(1.15)
by setting c54 = 0 (L = 1,...,4), cg;4 =0 (i = 1,...,5) in these formulas. In this case, the
matrix cyi has the form

o 1 0 0 000

—y 1 0O 000

ct= — gyt 050y " Cae 1 (1) 0 g
Oyt Cupfar T Cug (Ca T Ca0%a1) T Ca T Cusfs Tz 10

: 0 0 10

0 0 0 001

100



Evidently a monoclinic system material is determined by 12 independent parameters: d;, d,,...,
dg, Ca15 C31s Cu1s C3zs Cuazs and ¢, with condition (1.5) being satisfied. If the moduli E,, Eg,
and E, = 2u,, are taken as the independent parameters instead of d,, d,, and d,, then by
using (1.5) and the technical notation (1.8), we obtain condition (2.9) and

[Vig vy vay  CalFs =V ¥9/Ey) (Vao/ By — Var¥ar/E) r
o - 2
.1_> Vil + (V42/E2*V41V21/E1)2 + 1E? E, 1/Ez'_VZJ/El 5 (2-10)
= - 2
E, £, YE, — V2 /B, 4 Ve (Voo/ Ey — V3 Vey/E1)
E, ~ E 1E, — v} [Ey

For triclinic system materials, the matrices aj: and Aj; have the general form and
therefore the formulas (1.3)-(1.7), (1.10)-(1.15) for the general anisotropic case must be
used. The conditions d; > 0, dy > 0 can be rewritten similarly to (2.9) and (2.10) by using
the technical notation (1.8), but due to the unwieldiness of these formulas, they will
not be written out here.
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ENERGY VERSION OF CREEP AND STRESS-RUPTURE STRENGTH THEORY FOR ANISOTROPIC
AND ISOTROPIC MATERIALS WHICH DIFFER IN RESISTANCE TO TENSION
AND COMPRESSION

Kh. I. Al'tenbakh and A. A. Zolochevskii UDC 539.3

A new separate branch in solid mechanics has recently been formed, i.e., creep theory
for materials which resist tension and compression differently [1-15]. Intense development
of it is connected with considerable engineering applications since light alloys, gray cast
irons, polymers, ceramics, composites, and other materials whose creep depends on the type of
loading are used extensively in various fields of technology. On the other hand, in published
works [16-26] considerable attention is devoted to the mechanics of damaged materials. The
majority of the approaches in this field are development and generalization of the Rabotnov
concept [27] about a material damage parameter. It is evident that deformation and damage
accumulation occur under creep conditions in parallel with each other and they have a reci-
procal effect. In order to describe these phenomena it is very convenient to use equations
of state in an energy form which make it possible to compare creep analysis with finding the
time for failure of a structure. Here in the equations it is necessary to reflect the effect
of the form of loading on creep and stress-rupture strength.
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